Two-period, two-treatment crossover designs subject to non-ignorable missing data.

نویسندگان

  • John N S Matthews
  • Robin Henderson
چکیده

In common with most forms of designed experiment, crossover trials can be affected by missing data. Attempts to devise designs that can mitigate the possible effects of missing data, such as loss of efficiency, or even inestimability of certain contrasts, have been proposed. However, a potentially serious effect of missing data that has not been addressed in designs hitherto is that the treatment effects may be biassed because of the nature of the missingness process. We investigate this problem in two-treatment, two-period crossover designs. In particular, we consider the robustness of the analysis under a missing at random assumption when, in fact, the data are non-ignorably missing. We show that the conventional AB/BA design still has good properties, although the design with sequences AB, BA, AA, and BB may be preferred if the chance of dropout depends primarily on the difference between the responses in the two periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pattern mixture model for a paired 2 × 2 crossover design

When conducting a paired 2 × 2 crossover design, each subject is paired with another subject with similar characteristics. The pair is then randomized to the same sequence of two treatments. That is, the two subjects receive the first experimental treatment, and then they cross over and receive the other experimental treatment(s). The paired 2× 2 crossover design that was used in the Beta Adren...

متن کامل

Application of linear mixed-effects models to crossover designs

APPLICATION OF LINEAR MIXED-EFFECTS MODELS TO CROSSOVER DESIGNS LeiZhou November 29,2012 Crossover design is a type of longitudinal study with each subject receiving different treatments in different time periods. It has been used frequently in the pharmaceutical industry and other medical fields to investigate the safety and efficacy of new drugs or new treatments. For crossover studies, the t...

متن کامل

Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model.

In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non-ignorable missing data. In addition to non-ignorable missingness, there is left-censoring in the response measurements because of the inherent limit of detectio...

متن کامل

A Genetic Algorithm Approach for Non-Ignorable Missing Data

The databases store data that may be subjected to missing values either in data acquisition or data storage process. The proposed approach uses the widely used optimization technique called genetic algorithm for the NMAR (Not Missing At Random) missing mechanism which prevails more in real life that are non-ignorable. Since the non-ignorable mechanism needs prior

متن کامل

Adjusting for informative missing outcome data in clinical trials with longitudinal study designs

In many clinical trials with longitudinal outcome data, a common situation is where some patients withdraw or dropout from the trial before completing the measurement schedule. In most cases reasons for dropout is related to the subsequent outcome, hence missingess is informative or non-ignorable. Failure to take appropriate account of such missing data can lead to biased estimation of treatmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biostatistics

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2013